Documentation of plot_eke


Global Index (short | long) | Local contents | Local Index (short | long)


Help text

lims = [30 150 0 60];

Cross-Reference Information

This script calls

Listing of script plot_eke


cd /cdrom
filin = 'warmenso.nc';
nc = netcdf(filin, 'nowrite');
  uw = nc{'U'}(:);
  vw = nc{'V'}(:);
  ow = nc{'OMEGA'}(:);
  psw = nc{'PS'}(:);
  kew = nc{'VVPUU'}(:);
  lon = nc{'lon'}(:);
  lat = nc{'lat'}(:);
nc = close(nc);
uw = uw(2:4,:,:,:);
vw = vw(2:4,:,:,:);
ow = ow(2:4,:,:,:);
psw = psw(2:4,:,:,:);
kew = kew(2:4,:,:,:);
filin = 'clim_dec82-jun98.nc';
nc = netcdf(filin, 'nowrite');
  uc = nc{'U'}(:);
  vc = nc{'V'}(:);
  oc = nc{'OMEGA'}(:);
  psc = nc{'PS'}(:);
  kec = nc{'VVPUU'}(:);
  lon = nc{'lon'}(:);
  lat = nc{'lat'}(:);
  hyam = nc{'hyam'}(:);
  hybm = nc{'hybm'}(:);
  P0 = nc{'P0'}(:);
  plevs = nc{'lev'}(:);
nc = close(nc);
uc = uc([12 1 2],:,:,:);
vc = vc([12 1 2],:,:,:);
oc = oc([12 1 2],:,:,:);
psc = psc([12 1 2],:,:,:);
kec = kec([12 1 2],:,:,:);
whos
eketem = squeeze(mean(kew));
utem = squeeze(mean(uw.^2));
vtem = squeeze(mean(vw.^2));
ekew = eketem - utem - vtem;
eketem = squeeze(mean(kec));
utem = squeeze(mean(uc.^2));
vtem = squeeze(mean(vc.^2));
ekec = eketem - utem - vtem;
psc = mean(psc);
psw = mean(psw);
ekewmo = squeeze(mean(kew - uw.^2 - vw.^2));
ekecmo = squeeze(mean(kec - uc.^2 - vw.^2));
lev = 250;
temw = atlev(ekew, lev, psw, hyam, hybm, P0);
temc = atlev(ekec, lev, psc, hyam, hybm, P0);
lims = [120 300 -30 75];

figure(1)
orient tall
subplot(2,1,1)
     tem = subset(temw, lat, lon, lims);
     gcont(tem, lims, [0:50:1000]);
     dc
subplot(2,1,2)
     tem = subset(temc, lat, lon, lims);
     gcont(tem, lims, [0:50:1000]);
     dc

figure(2)
subplot(2,1,1)
     tem = subset(temw, lat, lon, lims) - subset(temc, lat, lon, lims);
     gcont(tem, lims, [-500:20:500])
     dc
subplot(2,1,2)
     tem = subset(temwmo, lat, lon, lims) - subset(temcmo, lat, lon, lims);
     gcont(tem, lims, [-500:20:500]);
     dc

%  Look at zonal wind variations:

lims = [140 240 -90 90];
%lims = [0 360 -90 90];

temuc = squeeze(mean(subset(uc, lat, lon, lims)));
temvc = squeeze(mean(subset(vc, lat, lon, lims)));
temoc = squeeze(mean(subset(oc, lat, lon, lims)));
temuw = squeeze(mean(subset(uw, lat, lon, lims)));
temvw = squeeze(mean(subset(vw, lat, lon, lims)));
temow = squeeze(mean(subset(ow, lat, lon, lims)));

temuc = squeeze(mean(shiftdim(temuc,2)));
temvc = squeeze(mean(shiftdim(temvc,2)));
temoc = squeeze(mean(shiftdim(temoc,2)));
temuw = squeeze(mean(shiftdim(temuw,2)));
temvw = squeeze(mean(shiftdim(temvw,2)));
temow = squeeze(mean(shiftdim(temow,2)));

lk = 1:4:length(lat);
temlat = lat(lk);

figure(1)
subplot(2,1,1)
pncont(lat, -1*plevs, temuc,[-100:10:100]);
set(gca, 'YTickLabel', [900:-100:100])
%hold on
%quiver(temlat, -1*plevs, temvc(:,lk), -200*temoc(:,lk),10);
%hold off
subplot(2,1,2)
pncont(lat, -1*plevs, temuw,[-100:10:100]);
set(gca, 'YTickLabel', [900:-100:100])
%hold on
%quiver(temlat, -1*plevs, temvw(:,lk), -200*temow(:,lk),10);
%hold off
vect(lat, -1*plevs, temvw, -100*temow);
hold off

figure(2)
pncont(lat, -1*plevs, temuw-temuc,[-100:2:100])
%hold on
%quiver(temlat, -1*plevs, temvw(:,lk)-temvc(:,lk),...
%    -200*(temow(:,lk)-temoc(:,lk)),10);
%hold off
set(gca, 'YTickLabel', [900:-100:100])

%  Look at 'Basic Barotropic Shear' as in Zuecher & Hartmann

bbs = 8*(exp(-1*((abs(lat)-20)./12.5).^2) - exp(-1*((abs(lat)-50)/12.5).^2));
bbs = ones(18,1)*bbs';

figure(1)
orient tall

subplot(2,1,1)
pncont(lat, -1*plevs, (temuw-temuc),[-100:1:100]);
subplot(2,1,2)
pncont(lat, -1*plevs, bbs,[-100:1:100]);

%  Check out nmc.reanalysis

cd /home/disk/tao/data/nmc.reanalysis/monthly

tmst = [288:290];
tms = tmst;
for i = 1:16;
  tms = [tms tmst+i*12];
end

filin = 'uwnd.mon.mean.nc';
nc = netcdf(filin, 'nowrite');
  latn = nc{'lat'}(:);
  lonn = nc{'lon'}(:);
  un   = nc{'uwnd'}(288:483,:,:,:);
  un = un(tms,:,:,:);