Documentation of coup_run_stats


Global Index (short | long) | Local contents | Local Index (short | long)


Help text

  Average by season, to make this a bit more manageable

Cross-Reference Information

This script calls

Listing of script coup_run_stats


clear
lims = [100 300 -60 60];
varn = 'temp';
cd /home/disk/hayes2/dvimont/csiro/data/Individual_levels
nc = netcdf([varn '_M_L1_1000_years_new.nc'], 'nowrite');
  lat = nc{'latitude'}(:);
  lon = nc{'longitude'}(:);
  [xk, yk] = keep_var(lims, lon, lat);
  sst = nc{varn}(:,:,yk,xk);
  sf = nc{varn}.scale_factor(:);
  ao = nc{varn}.add_offset(:);
  mv = nc{varn}.missing_value(:);
nc = close(nc);
sst(sst == mv) = NaN;
[lat, lon, depth, lm] = getll('temp', lims);
sst = squeeze(sst);

[sst, clim] = annave(sst);
[nyr, nlat, nlon] = size(sst);

seas = repmat(NaN, [nyr/3-1 nlat nlon]);

for i = 1:(nyr/3-1);
  tind = 3*(i-1)+[3:5];
  seas(i,:,:) = mean(sst(tind,:,:));
end

sst = seas;

cd /home/disk/hayes2/dvimont/csiro/matlab_data/Heat_Content
%save SST_seasonal.mat sst lat lon lims

%%%%%%%%%%%%%%%%%%%%%%%  now just load it in

clear

%  Get CT index

csirod
%load SST_seasonal.mat
back

lims = [100 300 -60 60];
sst = getnc('temp', lims, 1, 101:1000);
slp = getflx('psl', lims, 101:1000);
[lat, lon, depth, lm] = getll('temp', lims);

ctlim = [180 270 -6 6];
[xk, yk] = keep_var(ctlim, lon, lat);
ct1 = sst(:,yk,xk);
ct1 = squeeze(mean2(mean2(shiftdim(ct1, 1))));
ct1 = detrend(ct1);

[reg1, c1] = regress_eof(sst, ct1, 0);

default_global; 

figure(1);
subplot(2,2,4)
  gcont(reg1, .05);
  dc2(lm, .5, 1);
  color_shade(squeeze(c1.^2), .25, .87*[1 1 1]);
subplot(2,2,3)
  gcont(reg2, .1);
  dc2(lm, .5, 1);
  color_shade(squeeze(c2.^2), .1, .87*[1 1 1]);

%  Get NH component of this %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

nhlims = [100 260 20 60];
[xk, yk] = keep_var(nhlims, lon, lat);

shlims = [150 290 -60 -20];
[xk, yk] = keep_var(shlims, lon, lat);

%[icex, icey] = keep_var([120 155 38 60], lon, lat);
lm2 = lm; %lm2(icey, icex) = NaN;

sst2 = cosweight(sst, lat);


rpat = [reg1(1,yk,xk); reg1(1,yk,xk)];
rpat = cosweight(rpat, lat(yk));
rpat = squeeze(rpat(1,:,:));
[nlat, nlon] = size(rpat);
rpat = reshape(rpat, 1, nlat*nlon)';

kp2 = find(~isnan(reshape(lm2(yk, xk), nlat, nlon)));
rpat = rpat(kp2);
sstreg = reshape(sst2(:,yk,xk), size(sst2, 1), nlat*nlon);
sstreg = sstreg(:,kp2);

rtime = sstreg*rpat;
rtime = detrend(rtime)./std(detrend(rtime));

[sstreg, sstc] = regress_eof(sst, rtime);

default_global;
figure(3); fo(1); clf;
subplot(2,2,1);
  gcont(sstreg, .05);
  dc2(lm, .5, 1);
  color_shade(squeeze(sstc.^2), .1, .87*[1 1 1]);

nhtime = rtime;

subplot(2,2,2);
  gcont(sstreg, .05);
  dc2(lm, .5, 1);
  color_shade(squeeze(sstc.^2), .1, .87*[1 1 1]);

shtime = rtime;