Global Index (short | long) | Local contents | Local Index (short | long)
subplot(2,2,2*i-1);
This script calls | |
---|---|
clear cd ~/matlab/CSIRO/Thesis/Data load PDO_HP10_detrend_L1_EOF_yr101-1000.mat; lpcs = pcs; lper = per; load PDO_LP9_detrend_L1_EOF_yr101-1000.mat; hpcs = pcs; hper = per; load PDO_detrend_L1_EOF_yr101-1000.mat; rpcs = pcs; rper = per; load slp_eof_npac.mat load z250_eof_npac.mat ct = getct; lims = [-0.1 360 -90 90]; tim = 101:1000; sst = getnc('temp', lims, 1, tim); sst = detrend(sst); slp = getflx('psl', lims, tim); slp = detrend(slp); z250 = getnc('z250', lims, 1, tim); z250 = detrend(z250); taux = getnc('taux', lims, 1, tim); taux = detrend(taux); [lat, lon, depth, lm] = getll('temp', lims); default_global; FRAME = [105 300 -60 60]; for figind = 1:3; if figind == 1; timvar = rpcs; tit = 'RPC'; hello(tit); elseif figind == 2; timvar = hpcs; tit = 'HPC'; hello(tit); elseif figind == 3; timvar = lpcs; tit = 'LPC'; hello(tit); end for i = 1:2; reg1(i,:,:) = regress_eof(sst, timvar(:,i), 0); end for i = 1:2; reg2(i,:,:) = regress_eof(slp, timvar(:,i), 0); end for i = 1:2; reg3(i,:,:) = regress_eof(taux, timvar(:,i), 0); end figure(figind); fo(1); clf j = 1; for i = 1:2; pos = [.2+.38*(i-1) (9.8/11)-(j)*7/(3*11) ... .3 .18]; subplot('position', pos); gcont(reg1(i,:,:), 0.05); dc2(lm); title([tit num2str(i) ' of NP Z250']); end j = 2; for i = 1:2; pos = [.2+.38*(i-1) (9.8/11)-(j)*7/(3*11) ... .3 .18]; subplot('position', pos); gcont(reg2(i,:,:), 0.2); dc2(lm, .35, -1); end j = 3; for i = 1:2; pos = [.2+.38*(i-1) (9.8/11)-(j)*7/(3*11) ... .3 .18]; subplot('position', pos); gcont(reg3(i,:,:), .01); dc2(lm, .35, -1); end end; % figind loop cd /home/disk/tao/dvimont/matlab/CSIRO/Thesis/Chap5/Plots figure(1); print -dps2 Regressions_on_NPZ250_RPC1_RPC2.ps figure(2) print -dps2 Regressions_on_NPZ250_HPC1_HPC2.ps figure(3) print -dps2 Regressions_on_NPZ250_LPC1_LPC2.ps %%%%%%%%%%%%%%%%%% % % From this analysis (above) the following relationships appear: % % Raw: % % PC1SST = -PC1SLP ~= -PC1Z250 % PC2SST = PC2SLP = PC2Z250 % % HP: % % PC1SST = -PC1SLP = -PC1Z250 % PC2SST = PC2SLP = PC2Z250 % % LP: % % PC1SST ~= PC2SLP = \ some sort of combination ?= % PC2SST ~= PC1SLP = / of these two PC's of Z250 [b, a] = butter(9, 2/9); lpct = filtfilt(b, a, detrend(ct)); clear tem; tem(1,:,:) = regress_eof(sst, lpct, 0); for i = 1:3; tem(i+1,:,:) = regress_eof(sst, lpcs(:,i), 0); end cint = 0.5 FRAME = [0 360 -90 90]; figure(1); fo(1); for i = 1:2; subplot(2,1,i); gcont(tem(i,:,:), cint); dc2(lm, .5, -1); end figure(2); fo(2); for i = 1:2; subplot(2,1,i); gcont(tem(i+2,:,:), cint); dc2(lm, .5, -1); end % Look at statistics clear cd ~/matlab/CSIRO/Thesis/Data load PDO_HP10_detrend_L1_EOF_yr101-1000.mat; lpcs = pcs; lper = per; load PDO_LP9_detrend_L1_EOF_yr101-1000.mat; hpcs = pcs; hper = per; load PDO_detrend_L1_EOF_yr101-1000.mat; rpcs = pcs; rper = per; load slp_eof_npac.mat load z250_eof_npac.mat ct = getct; ct = detrend(ct); [b, a] = butter(9, 2/9); lpct = filtfilt(b, a, ct); [b, a] = butter(9, 2/10); hpct = ct - filtfilt(b, a, ct); tind = 1:900; lags = -10:10; for i = 1:length(lags); rcor1(i) = corr(ct(tind), rpcs(tind,1), lags(i)); rcor2(i) = corr(ct(tind), rpcs(tind,2), lags(i)); hcor1(i) = corr(hpct(tind), hpcs(tind,1), lags(i)); hcor2(i) = corr(hpct(tind), hpcs(tind,2), lags(i)); lcor1(i) = corr(lpct(tind), lpcs(tind,1), lags(i)); lcor2(i) = corr(lpct(tind), lpcs(tind,2), lags(i)); end figure(3); fo(1); order = ['rcor'; 'hcor'; 'lcor']; for j = 1:3; for i = 1:2; pos = [.2+.38*(i-1) (9.8/11)-(j)*7/(3*11) ... .3 .18]; subplot('position', pos); eval(['tem = ' order(j,:) num2str(i) ';']); bar(lags, tem) axis([-10 10 -.5 1]) set(gca, 'XTick', -10:5:10) grid on end end