Documentation of armax


Global Index (short | long) | Local contents | Local Index (short | long)


Function Synopsis

[th,it_inf]=armax(z,nn,maxiter,tol,lim,maxsize,Tcap,trc)

Help text

ARMAX    Computes the prediction error estimate of an ARMAX model.
   TH = ARMAX(Z,NN)  or TH = ARMAX(Z,NN,'trace')

   TH: returned as  the estimated parameters of the ARMAX model
   A(q) y(t) = B(q) u(t-nk) + C(q) e(t)
   along with estimated covariances and structure information.
   For the exact format of TH, see also THETA.

   Z : The output-input data Z=[y u], with y and u being column vectors.
   For a time-series, Z=y only. The routine does not work for multi-
   output systems. Use state-space models and PEM for that case.

   NN: Initial value and structure information. When no initial parameter
   estimates are available enter NN as
   NN=[na nb nc nk], the orders and delay of the above model. For multi-
      input models, nb and nk are row vectors so that nb(k) and nk(k) is 
      the order and delay associated with input # k.
   NN=[na nc] for the time-series case (ARMA-model).
   With an initial estimate available in THI, a theta matrix of standard
   format, enter NN=THI. Then the criterion minimization is initialized 
   at THI.

   If a *last* argument to armax is entered as 'trace', information about
   the criterion minimization is given in the MATLAB Command Window.
   Some parameters associated with the algorithm are accessed by
   [TH,IT_INF] = ARMAX(Z,NN,maxiter,tol,lim,maxsize,T,'trace')
   See also AUXVAR for an explanation of these and their default values.
   See also ARX, BJ, IV4, N4SID, OE, PEM.

Cross-Reference Information

This function calls This function is called by

Listing of function armax

function [th,it_inf]=armax(z,nn,maxiter,tol,lim,maxsize,Tcap,trc)

%   L. Ljung 10-1-86,7-27-94
%   Copyright (c) 1986-98 by The MathWorks, Inc.
%   $Revision: 2.5 $  $Date: 1997/12/02 03:42:40 $

%
% *** Set up default values ***

if nargin<2
  disp('Usage: TH = ARMAX(Z,ORDERS)')
  disp('       TH = ARMAX(Z,ORDERS,''trace'')')
  disp('       TH = ARMAX(Z,ORDERS,maxiter,tol,lim,maxsize,T,''trace'')')
  return
end

global XIDiter
gui=0;display=0;stopp=0;flag=[];
eval('flag=findobj(get(0,''children''),''flat'',''tag'',''sitb22'');','');
if ~isempty(flag),if strcmp(get(flag,'vis'),'on'),
   gui=1;set(XIDiter(7),'userdata',0);
end,end 
   
[Ncap,nz]=size(z);

[nr,cc]=size(nn);   nu=nz-1;
maxsdef=idmsize(Ncap);

if nargin==8,if strcmp(lower(trc),'trace'),display=1;end,end
if nargin==7,if strcmp(lower(Tcap),'trace'),display=1;Tcap=[];end,end
if nargin==6,if strcmp(lower(maxsize),'trace'),display=1;maxsize=[];end,end
if nargin==5,if strcmp(lower(lim),'trace'),display=1;lim=[];end,end
if nargin==4,if strcmp(lower(tol),'trace'),display=1;tol=[];end,end
if nargin==3,if strcmp(lower(maxiter),'trace'),display=1;maxiter=[];end,end

if nargin<7, Tcap=[];end
if nargin<6, maxsize=[];end
if nargin<5, lim=[];end
if nargin<4, tol=[];, end
if nargin<3, maxiter=[]; end
if isempty(Tcap),if nr>1,Tcap=gett(nn);else Tcap=1;end,end
if isempty(maxsize),maxsize=maxsdef;end
if isempty(lim),lim=1.6;end,if isempty(tol),tol=0.01;end
if isempty(maxiter),maxiter=10;end
if Tcap<0,Tcap=1;end, if maxsize<0,maxsize=maxsdef;end, if lim<0,lim=1.6;end
if tol<0,tol=0.01;end,if maxiter<0, maxiter=10;end

% *** Do some consistency tests ***

if display==1,arg='trace';else arg='notrace';end

if nz>Ncap, error('The data should be organized in column vectors')
return,end

if nr==1 
   if cc~=2*nu+2, 
       disp('Incorrect number of orders specified:')
       disp('For a time series  nn=[na nc]')
       disp('For a model with input  nn=[na nb nc nk], where nb and nk')
       disp('are row vectors of length= # of inputs.')
       error(' ')
   end
   if any(nn<0)
       error('All orders must be non-negative.')
   end

   nb=nn(2:1+nu);
   if sum(nn(1:2+nu))==0
      th=[];it_inf=[];
      disp('All orders are zero. No model returned.');
      return
   end
   if nu>0&sum(nb)==0
      [th,it_inf]=armax(z(:,1),[nn(1) nn(2+nu)] ,...
                     maxiter,tol,lim,maxsize,Tcap,arg);
      [rth,cth]=size(th);
      if cth<6+3*nu,th=[th,zeros(rth,6+3*nu-cth)];end
      th(1,3:3+3*nu+3)=[nu nn(1:2+nu) zeros(1,nu+1) nn(3+nu:2+2*nu)];
      return
   end
   if nu>1
      [th,it_inf]=pem(z,[nn(1) nn(2:2+nu) 0  zeros(1,nu) nn(3+nu:2+2*nu)] ,...
            [],maxiter,tol,lim,maxsize,Tcap,arg);
      return
    end
 end  % if nr==1

% *** if nn has more than 1 row, it is a theta matrix
%      and we jump directly to the minimization ***
%

if nr>1
   nu=nn(1,3);
   if nu>1, 
      th=pem(z,nn,[],maxiter,tol,lim,maxsize,Tcap,arg);
      return
   end
   if nu==1,  
      na=nn(1,4);nb=nn(1,5);nc=nn(1,6);nk=nn(1,9);
   else 
      na=nn(1,4);nb=0;nc=nn(1,5);nk=0;
   end
   n=na+nb+nc; t=nn(3,1:n).';
   if nc>0, c=[1 t(na+nb+1:n).'];else c=1;,end
   if na>0,a=[1 t(1:na).'];else a=1;,end
   if nb>0,b=[zeros(1,nk) t(na+1:na+nb).'];,else b=0;,end
   ni=max([na nb+nk-1 nc]);
   e=pefilt(a,c,z(:,1)); if nu==1, e=e-pefilt(b,c,z(:,2),e(1:ni));end
end

if nr==1,
   if nu==0,
          na=nn(1); nc=nn(2); nb=0; nk=0; n=na+nc;
          v=z; narx=na; nd=na;
   end
   if nu==1,
          na=nn(1); nb=nn(2); nc=nn(3); nk=nn(4); n=sum(nn(1:3));
          narx=[na nb nk]; nd=0;
   end
   ni=max([na nb+nk-1 nc]);
   if max([na nb])>0,t=arx(z,narx,maxsize,Tcap,0);else t=[];end
   if na>0, a=[1 t(1:na).'];else a=1;end
   if nb>0, b=[zeros(1,nk) t(na+1:na+nb).'];end
   if nc==0  % then we use the arx-estimate for initial condition
       e=pefilt(a,[1],z(:,1));
       if nu==1, e=e-pefilt(b,[1],z(:,2),e(1:ni));end
       c=1;
   end

   if nc>0 %then we compute the IV-estimate in case nu==1
      if nu==1
         a=fstab(a);
         t=iv(z,narx,a,b,maxsize,Tcap,0);
         if na>0,a=[1 t(1:na).'];else a=1;end
         b=[zeros(1,nk) t(na+1:na+nb).'];
         v=filter(a,1,z(:,1))-filter(b,1,z(:,2));v(1:ni)=zeros(ni,1);
      end
%
%  *** Determine the initial C-estimate by first building a
%      high order AR-model of the residuals v and the use the 
%      LS-method with the new residuals as inputs ***
%          
        ord=floor(min(na+nb+4*nc,length(v)/3));
        t1=arx(v,ord,maxsize,Tcap,0);
        e=pefilt([1 t1.'],1,v);
        t2=arx([v e],[nd nc 1],maxsize,Tcap,0);
%
%         ** test the stability of the C-estimate **
%
        c=[1 t2(nd+1:nd+nc).']; c=fstab(c);
        t2(nd+1:nd+nc)=c(2:nc+1).';
   
     if nu==1, t=[t;t2]; else t=t2;end
%
     if nd==0, d=1; else d=[1 t2(1:nd).'];end
     e=pefilt(d,c,v,zeros(1,ni));
  end
end
% *** Display initial estimate ***
%
if gui,drawnow,display=get(XIDiter(2),'value');end
V=e'*e/(Ncap-ni);
if display
%clc
disp(['  INITIAL ESTIMATE'])
disp(['Current loss:' num2str(V)])
disp(['th-vector'])
disp(t)
end
%
% *** start minimizing ***
%
% ** determine limit for robustification **
if lim~=0, lim=median(abs(e-median(e)))*lim/0.7;end
if lim==0
    el=e;
else
    [ne,me]=size(e);
    ll=ones(ne,me)*lim;la=abs(e)+eps*ll;el=e.*(min(la,ll)./la);
    clear ll,clear la
end
testnorm=tol+1;l=0; st=0; nmax=max([na nb+nk-1 nc]);

%
% ** the minimization loop **
%

while [testnorm>tol l<maxiter st~=1]
      l=l+1;

%     * compute gradient *

      yf=filter(-1,c,z(:,1)); ef=filter(1,c,e);
      if nu==1, uf=filter(1,c,z(:,2));end
      M=floor(maxsize/n);
      R=zeros(n);F=zeros(n,1);
      for k1=nmax:M:Ncap-1
          jj=(k1+1:min(Ncap,k1+M));
          psi=zeros(length(jj),n);
          for k=1:na, psi(:,k)=yf(jj-k);end
          for k=1:nb, psi(:,na+k)=uf(jj-k-nk+1);end
          for k=1:nc, psi(:,k+nb+na)=ef(jj-k);end
          R=R+psi'*psi; F=F+psi'*el(jj);
      end
      if Ncap>M, g=R\F; else g=psi\el(jj);end,grad=F;
      testnorm=abs(grad'*g/V/Ncap*100);

%
%     * search along the g-direction *
%
      [t1,e,el,V1,c,st]=searchax(z,t,g,lim,V,na,nb,nc,nk,ni,display);
      if st==1,
          [t1,e,el,V1,c,st]=searchax(z,t,grad/trace(R)*length(R),...
                      lim,V,na,nb,nc,nk,ni,display);
      end
      if gui,drawnow,display=get(XIDiter(2),'value');end
      if display
         %home
         disp(['      ITERATION # ' int2str(l)])
         disp(['Current loss: ' num2str(V1) '  Previous loss: ' num2str(V)])
         disp(['Current th  prev. th   gn-dir'])
         disp([t1 t g])
         disp(['Norm of gn-vector: '  num2str(norm(g))])
         disp(['Expected improvement: ',num2str(testnorm),' %'])
         disp(['Achieved improvement: ',num2str((V-V1)*100/V),' %'])
         if st==1
            disp(['No improvement of the criterion possible along the',...
                   ' search direction'])
            disp(['Iterations therefore terminated'])
         end
      end %if display
      if gui
         set(XIDiter(4),'string',int2str(l));
    set(XIDiter(5),'string',num2str(V1));
    set(XIDiter(9),'string',['(',num2str(V),')']);
    set(XIDiter(6),'string',num2str(testnorm));
    drawnow
    stopp=get(XIDiter(7),'userdata');
      end
      impr=V1-V;t=t1; V=V1;
      if stopp,break,end
end  % while
it_inf=[l,impr,testnorm];
th=zeros(3+n,max([6+3*nu 7 n]));
V=e'*e/(length(e)-ni);
if isempty(V)|isempty(t)
   disp('WARNING: Your input signal is apparently not persistently exciting.')
   disp('         Use other input or lower model orders.')
   disp('         No model returned.')
   th=[];return
end
if nu==1
   th(1,1:9)=[V Tcap 1 na nb nc 0 0 nk];
else 
   th(1,1:6)=[V Tcap 0 na nc 0];
end
th(2,1)=V*(1+n/Ncap)/(1-n/Ncap);
ti=fix(clock); ti(1)=ti(1)/100;
th(2,2:6)=ti(1:5);
th(2,7)=7;
th(3,1:n)=t.';
if maxiter==0,return,end
if Ncap>M, PP=inv(R); else PP=inv(psi'*psi);end
th(4:3+n,1:n)=V*PP;