Global Index (short | long) | Local contents | Local Index (short | long)
[th,it_inf]=oe(z,nn,maxiter,tol,lim,maxsize,Tsamp,trc)
OE Computes the prediction error estimate of an output-error model. TH = OE(Z,NN) or TH = OE(Z,NN,'trace') TH: Returned as the estimated parameters of the output-error model y(t) = [B(q)/F(q)] u(t-nk) + e(t) along with estimated covariances and structure information. For the exact format of TH, see also THETA. Z : The output-input data Z=[y u], with y and u being column vectors. This routine only works for single-output systems. Use PEM otherwise. NN: Initial value and structure information, given either as NN=[nb nf nk], the orders and delay of the above model, or as NN=THI, with THI being a theta matrix of the standard format. In the latter case the criterion minimization is initialized at THI. For multi-input systems, nb, nf and nk are row vectors, so that nb(k) nf(k) and nk(k) is the order and delay associated with input # k. If a *last* argument to OE is entered as 'trace', information about the criterion minimization is given in the MATLAB Command Window. Some parameters associated with the algorithm are accessed by [TH,IT_INF] = OE(Z,NN,maxiter,tol,lim,maxsize,T,'trace') See also AUXVAR for an explanation of these, and their default values. See also ARX, ARMAX, BJ, IV4, N4SID, PEM.
This function calls | This function is called by |
---|---|
function [th,it_inf]=oe(z,nn,maxiter,tol,lim,maxsize,Tsamp,trc) % L. Ljung 10-1-86,7-24-94 % Copyright (c) 1986-98 by The MathWorks, Inc. % $Revision: 2.6 $ $Date: 1997/12/02 03:43:13 $ if nargin<2 disp('Usage: TH = OE(Z,NN)') disp(' TH = OE(Z,NN,''trace'')') disp(' TH = OE(Z,NN,maxiter,tol,lim,maxsize,T,''trace'')') return end % *** Set up default values *** global XIDiter gui=0;display=0;stopp=0;flag=[]; eval('flag=findobj(get(0,''children''),''flat'',''tag'',''sitb22'');',''); if ~isempty(flag),if strcmp(get(flag,'vis'),'on') gui=1;set(XIDiter(7),'userdata',0); end,end [nr,cc]=size(nn); [Ncap,nz]=size(z); nu=nz-1; maxsdef=idmsize(Ncap); if nargin==8,if strcmp(lower(trc),'trace'),display=1;end,end if nargin==7,if strcmp(lower(Tsamp),'trace'),display=1;Tsamp=[];end,end if nargin==6,if strcmp(lower(maxsize),'trace'),display=1;maxsize=[];end,end if nargin==5,if strcmp(lower(lim),'trace'),display=1;lim=[];end,end if nargin==4,if strcmp(lower(tol),'trace'),display=1;tol=[];end,end if nargin==3,if strcmp(lower(maxiter),'trace'),display=1;maxiter=[];end,end if nargin<7, Tsamp=[];end if nargin<6, maxsize=[];end if nargin<5, lim=[];end if nargin<4, tol=[];, end if nargin<3, maxiter=[]; end if isempty(Tsamp),if nr>1,Tsamp=gett(nn);else Tsamp=1;end,end if isempty(maxsize),maxsize=maxsdef;end if isempty(lim),lim=1.6;end,if isempty(tol),tol=0.01;end if isempty(maxiter),maxiter=10;end if Tsamp<0,Tsamp=1;end, if maxsize<0,maxsize=maxsdef;end, if lim<0,lim=1.6;end if tol<0,tol=0.01;end,if maxiter<0, maxiter=10;end if display==1,arg='trace';else arg='notrace';end % *** Do some consistency tests *** if nz>Ncap, error('The data should be organized in column vectors') return,end if nu==0, error('OE makes sense only if an input is present.') return,end if nr==1 if cc~=3*nu, disp('Incorrect number of orders specified:') disp('Should be nn=[nb nf nk],') disp('where nb nf and nk are row vectors, each of length = # of inputs.') error(' ') end if any(nn<0) error('All orders must be non-negative.') end if sum(nn(1:nu))==0 error('OE does not make sense if all nb-orders are zero.') end kz=find(nn(1:nu)==0); if ~isempty(kz),nn(nu+kz)=zeros(1,length(kz));end end if nu>1&nr==1 th=pem(z,[0 nn(1:nu) 0 0 nn(nu+1:3*nu)] ,... [],maxiter,tol,lim,maxsize,Tsamp,arg); return end % %*** if nn has more than 1 row, then it is a theta matrix % and we jump directly to the minimization *** % if nr>1 nu=nn(1,3); if nu>1, [th,it_inf]=pem(z,nn,[],maxiter,tol,lim,maxsize,Tsamp,arg); return end nf=nn(1,8); nb=nn(1,5); nk=nn(1,9); n=nf+nb;ni=max(nf,nb+nk-1); t=nn(3,1:n).'; if nf>0; f=[1 t(nb+1:n).'];else f=1;end end % % if nr==1 nb=nn(1); nf=nn(2); nk=nn(3); n=nb+nf;ni=max(nf,nb+nk-1); % % % *** compute initial estimate via LS and IV *** % t=arx(z,[nf nb nk],maxsize,Tsamp,0); f=fstab([1 t(1:nf).']); t=iv(z,[nf nb nk],f,[zeros(1,nk) t(nf+1:n).'],maxsize,Tsamp,0); f=fstab([1 t(1:nf).']); % if nf>0, t=[t(nf+1:n); f(2:nf+1).'];end end % *** Display initial estimate *** % w=pefilt([zeros(1,nk) t(1:nb).'],f,z(:,2),z(1:ni,1)); v=z(:,1)-w; Vcap=v'*v/(Ncap-ni); if isnan(Vcap)|~finite(Vcap) disp('WARNING: Your input signal is apparently not persistently exciting.') disp(' Use other input or lower model orders.') disp(' No model returned.') th=[];return end if gui,drawnow,display=get(XIDiter(2),'value');end if display %clc disp([' INITIAL ESTIMATE']) disp(['Current loss:' num2str(Vcap)]) disp(['th-vector']) disp(t) end % % *** start minimizing ***% % ** determine limit for robustification ** if lim~=0, lim=median(abs(v-median(v)))*lim/0.7;end if lim==0 vl=v; else [ne,me]=size(v); ll=ones(ne,me)*lim;la=abs(v)+eps*ll;vl=v.*(min(la,ll)./la); clear ll,clear la end testnorm=tol+1;l=0; st=0; nmax=max(nf,nb+nk-1); % % ** the minimization loop ** % while [testnorm>tol l<maxiter st~=1] l=l+1; % * compute gradient * wf=filter(-1,f,w); uf=filter(1,f,z(:,2)); M=floor(maxsize/n); R=zeros(n);Fcap=zeros(n,1); for k=nmax:M:Ncap-1 jj=(k+1:min(Ncap,k+M)); psi=zeros(length(jj),n); for k=1:nb, psi(:,k)=uf(jj-k-nk+1);end for k=1:nf, psi(:,k+nb)=wf(jj-k);end R=R+psi'*psi; Fcap=Fcap+psi'*vl(jj); end if Ncap>M, g=R\Fcap; else g=psi\vl(jj);end,grad=Fcap; testnorm=abs(grad'*g/Vcap/Ncap*100); % % * search along the g-direction * % [t1,w,vl,v,V1,f,st]=searchoe(z,t,g,lim,Vcap,nb,nf,nk,ni,display); if st==1, [t1,w,vl,v,V1,f,st]=searchoe(z,t,grad/trace(R)*length(R),... lim,Vcap,nb,nf,nk,ni,display); end if gui,drawnow,display=get(XIDiter(2),'value');end if display %home disp([' ITERATION # ' int2str(l)]) disp(['Current loss: ' num2str(V1) ' Previous loss: ' num2str(Vcap)]) disp(['Current th prev. th gn-dir']) disp([t1 t g]) disp(['Norm of gn-vector: ' num2str(norm(g))]) disp(['Expected improvement: ',num2str(testnorm),' %']) disp(['Achieved improvement: ',num2str((Vcap-V1)*100/Vcap),' %']) if st==1 disp('No improvement of the criterion possible along the search direction') disp('Iterations therefore terminated'),end end %if display if gui set(XIDiter(4),'string',int2str(l)); set(XIDiter(5),'string',num2str(V1)); set(XIDiter(9),'string',['(',num2str(Vcap),')']); set(XIDiter(6),'string',num2str(testnorm)); drawnow stopp=get(XIDiter(7),'userdata'); end t=t1; impr=V1-Vcap;Vcap=V1; if stopp,break,end end it_inf=[l,impr,testnorm]; Vcap=v'*v/(length(v)-ni); if isempty(Vcap)|isempty(t) disp('WARNING: Your input signal is apparently not persistently exciting.') disp(' Use other input or lower model orders.') disp(' No model returned.') th=[];return end th(1,:)=[Vcap Tsamp 1 0 nb 0 0 nf nk]; th(2,1)=Vcap*(1+n/Ncap)/(1-n/Ncap); ti=fix(clock); ti(1)=ti(1)/100; th(2,2:6)=ti(1:5); th(2,7)=8; th(3,1:n)=t.'; if maxiter==0, return,end if Ncap>M, PP=inv(R); else PP=inv(psi'*psi);end th(4:3+n,1:n)=Vcap*PP;